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Equations of motion for nematic liquid-crystal media in a magnetic field and

also the equations of thermal conductivity are obtained, Together with the con-
dition of continuity and the equation of state, these relationships determine the
fields of nine quantities which characterize the nematic fluid: densities, pressures,
temperatures, basis vectors of the local axis of anisotropy, rates of collective
rotations of molecules near their "long" axes, and vectors of translational velo-
city, Initial conditions and boundary conditions are formulated, Special cases
are examined: equilibrium of the medium in a homogeneous magnetic and tem-
perature field, disinclinations, orientational boundary layer, and also the flow
in a flat capillary in a magnetic field and the drag of fluid by a rotating magn-
etic field, Based on obtained results, an explanation is given for a number of
effects which have been discovered experimentally earlier,

Liquid crystals occupy on the thermodynamic scale of states an intermediate
(mesophase) position between anisotropic crystals and isowopic liquids, Two
fundamental varieties of mesophases exist; the smectic and the nematic, In the
liquid crystal medium of the smectic type the one-dimensional long-range co-
ordination structure is preserved, The molecules are organized in regularly spa-
ced parallel monolayers, In the medium of the nematic type the long-range
order is completely absent in the spatial arrangement of molecules, just as in
the ordinary liquid. However, in contrast to a liquid and in similarity to a solid
crystal the long-range order of orientation for the "long" molecular axes is pre~
served, The orientational order is characterized in each point of the medium by
the axis of mean molecular orientation, This axis is simultaneously the local
axis of symmetry of the medium,

In their mechanical properties the nematic media are quite close to liquids,
Experiments show [1, 2] that the behavior of nematic liquids in a force field,

a temperature field, a magnetic field, and an electrical field has a number of
anomalies (anisotropy of viscosity, scale effect, orientation in hydrodynamic
flow, drag of the medium by a rotating magnetic field, and others, )

The peculiar combination of mechanical properties makes liquid crystal media
interesting objects for investigation from the point of view of continuum mechan-
ics, At the present time the hydrostatic theory {3 -~ 9] is the most developed, In
papers [10 - 12] linear hydrostatics is examined with consideration of thermal
conductivity and effects of rotational viscosity, The hydrodynamic theory which
takes into account elastic and thermal effects in a magnetic field is just being
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developed [13, 14), Some results are available in paper [9],

Liquid crystals belong to so~called media with moments or media with rotat~
ional degrees of freedom [15], At the phenomenological level these degress of
freedom are taken into account in asymmetric mechanics of continuous media,
On the basis of ideas of asymmetric mechanics [16, 17] the general hydrodyna-
mic theory for nematic liquids is developed in [13, 14] taking into account ela~
stic, thermal and magnetic effects, Based on this development, the goal of the
present paper is to obtain a closed system of equations of motion, to formulate
boundary conditions and initial conditions, to clarify the most essential charac-
teristics of the equations, and to examine the simplest cases of motion of nematic
liquids.

The conservation laws for momentum and characteristic anguiar momentum, for mass
and local moment of inertia, and also the equation for entropy balance have the form
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Here 0in and i are unsymmetric tensors of stresses and moment stresses, Pfi and pm;
are bulk densitics of external forces and moments, vi is the velocity of translational
motion of a small region of the medium, «; is the angular velocity of the self-rotation
in this region, I;, is the local moment of inertia, p, T are, respectively, the density
of the medium and the absolute temperature, €innm is the tensor of Levi-Civita, wi is
the angular velocity of rotation of the trihedral of the principal axes of the tensor 7,

s is the entropy per unit mass, ¢ is the heat flux, 8 is the entropy production in
the irreversible process, The entropy production is considered as a given function, The
dot indicates a substantive derivative,

For a nematic medium the local moment of inertia 1, is expressed [13] through the
principal values of the tensor of inertia of the molecule (i;, i,, iy), the mass of the mol-
ecule m, the structural parameter ; which characterizes the local degree of orientation
of long molecular axes, and through the basis vector L; of the axis of nematic molec-
ular order (which is equivalent to the axis of anisotropy of the medium)
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The angular velocity of the self-rotation o; for a nematic medium has the form
L
@, =w,+Ly, w=LL €. $= Allvide o E‘l P (0.5)

Here w; is the velocity of rotation of the axis of anisotropy L, which is simultaneously
the principal axis of the tensor Inn; Ly is the average rate of rotation of molecules
around their central axes, parallel to the axis L; " is the molecular angular velocity;
AN is the number of molecules in the small region of the medium, If the conditions

I J_ == ] '” == ( and the first of relationships (0, 4) are satisfied, as will be assumed in
the following, then the law of conservation of local moment of inertia is identically
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satisfied,

We proceed now to the determining relationships obtained in paper [13], Elastic phe-
nomena in nematic media which are connected with a change of specific volume and
the appearance of gradients of directions of the axis L, are described by the laws of
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Here p is the pressure, ¢ is the specific volume, T, and My; are elastic stresses and
elastic moment stresses, R;, is the tensor of orientation gradients, The superscript zero
indicates values of quantities in the undeformed state, Temperature dependent material
coefficients o and duss, diznz, Gea;, dia1s represent the compressibility of the medium
and the elasticity of the continuum of directions,

The imeversible processes of internal friction are connected with viscous flow, the
local rotation of the axis of anisotopy L with respect to the surrounding region of the
medium, and also with molecular rotation around the axes parallel to L. The dissipa-
tion function and the corollary rheological relationships [13] have the form
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Here II, ., and Hﬁn] are the symmetric and antisymmetric parts of the viscous stress
tensor, LiV; is the tensor of viscous moment stresses, v, is the symmetric tensor of
velocity gradients, Material coefficients from 2; to as are responsible for the bulk,
shear and rotational viscosity, while 2 and g, are coefficients of "moment” viscosity; -
b- is the gyrothermal coefficient which characterizes the appearance of viscous moment
stresses in the field of temperature gradients, The complete stress and moment stress

tensor is the sum of corresponding elastic and viscous components
Sin = Tin + Hin; p’in =M, + LiNn

n

Irreversible processes in liquid crystals are also connected with thermal conductivity,
The thermal conductivity law has the form [13]

1p=—1y O + O = k) LiL,)oT |8z, + bL, 7y €inm (0.13)

Here 2, and A are coefficients of thermal conductivity in the parallel and perpendi-
cular directions to

All material coefficients in (0,10) - (0,13) depend on temperature, They can also
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depend on the intensity of the magnetic field, However, it is possible to show that this
dependence can be neglected (because of weak magnetization ability of lquid crystal),

1, Equations of motion {n the kinematic form end the equation
of thermal conduetivity, Let us now turn to the derivation of the egnauons or
motion, It is assumed that in (0. 8) init{a} moment strestes are absent i,e, Mya = 0.
This occurs when it turns out that for homogeneous orientation of directions [ in space
the molecular axes are also strictly parallel,

Equations of motien of 2 nematic medivm can be obtainad if the laws of elasticity
(0.6} and (0, 7) and the rheological laws (0, 10) - (0, 12) are substituted into {0,1) taking
into account the relationship (0,4), Thus, substituting (0.10) and (0. 11) into the first
equation (0, 1), we obtain the equations which deseribe the motion of the continnum of
centers of inerda

oy = pf—grad p,_ 4 ¥ {7, + 28, — a)grad div v - Y, (g, 4 a0 AV — Mx
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— Y {8y 4 ag) ot [T 20t v X L) + Y (@ - 8, — ) Tob (L0 L
{(Po=p+ oM o8, V= {LViv, D=2V + Lxratv)
Furthet, substituting (0.6, (0.7). {0.12) and also (0, 4) into the second equation (0,1),
we obtain the equations of motion for the ¢ontinuum of direqtions
P (x L5 (B + Lap)] = pm + Lox M - HaagDx Lo
“+ (@ - 289} fo — Lox L L] - a i (p — Lea) - 0, [0V L = Ldiva] =
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in equations (1,1) and (1, 2)
M = di31sAL — (dygrg — dpape) grad divi 4
“+ {drare ~— Gypez — Fpmaz — theer) {{Lrot Ly rot L 4 rot {L (Lot L) (1.3}
The fitst four terms on the right side in (1.1} azc the same a5 in m'ﬁaﬁaxusmkes eque.
ation for the ordinary liquid, Equation (1.3) degenerates for the ordinary liquid into the
following relationship
{2y + 29} {@ — Lx L we Lp] + @ L (9 e Bt} = 0

which & equivalent to the trivial relatiomship o = L X L 4+ Ly,

Equations (1.1} and (1, 2) form a system of six equations fm nise gektows functions:
vy, Ly, o p and 7. In order to obtain a closed system of equations, it {3 pecessary
ta add to Bqs. (1.1) and (1,2) the equation of conservation of mass (0, 2), , the relation.
ship (0,6), and the equation of thermal conductivity, The equation of thermat Conduc~
tivity is obtained by substituting the exprestion for the dissipation function {0, 9) into the
equation for entopy balance {0, 3), Taking inte account the law of thenmnal corductivity
{G.13), ws gbtain

r}T.{; "*w;[k*ﬁzn’*'ﬂ““k@)f L,»L] “E‘*bLan’%esaaf e
4 Han¥emy 4 Hpng (0 — @by egm 4 Nang (1.4}



Equations of motion of nematic liguid-crystal media 835

It is evident from (1. 4) that the change in entropy is connected with thermal conducti-
vity and dissipation of mechanical energy in the motion of centers of inertia of mole -
cules and during their rotation, If

T= const, 1; = const, L' = 0,9 =0

then it follows from (1.4) that s = 0. In the general case s = s (T, &, M;, R;,)
{M; is the magnetization of the medium), Therefore,
o« __ e Os .05 ) ./ Bs ds

§ =T —) L 25 M2 R >
(ar S,R.M \aﬁ’T.R.M+ 1\"1‘4i/1,1?,45\~f_ (‘33 T,8,M
The last two terms on the right side describe the magnetocaloric and the orientational
gradient thermal effects, Both of these are insignificantly small compared to the first
two because of the quite small magnetization of liquid crystals and the small energy of
thermodynamic transition of a nematic liquid crystal into an isowopic liquid, Consequ-~

ently, / ds
ST g8
\ 6?’/ t9 <30 }T

By virtue of the thermodynamic identity (95 / 83)r = (6p / 3T)s we obtain

S=T g — 1 (Op/ .'3T)9
If we neglect the effect of orientation gradients on the specific volume (the effect is of
second order in smallness with respect to 6/,; / dr,),we can write

a9 \ ) - {8 [ ot
"T( T/, = T7T"cy, cp=ce— T aﬁ)a \df‘), -9

Here ¢, is the specific heat at constant pressure, Taking in account (0,10) - (0,12)
and (1, 5), we obtain
cp 7" =2, AT 4 (Ay —A;)[Lgrad T divL 4+ Lgrad (Lgrad 7] +
+ bgrad Y rot L 4 ¢ 0eimy Pamy + 221060 LnUimny + @5 (53 LyDan)? +
”*" 204 ([‘i] nv(iif)) Timm) ":"'af;v(un)l"(mm)‘}‘ 206 (Lizi(in’)Lqenmq) ((') - a)m + (16)
+ 20;(0 —al, (@ —a), + a5 {(» — @) — [L{o — @)]*} + 29n;n; 4 a3 (L;ny)?

This is the thermal conductivity equation generalized to the case of motion of an ani-
sotropic nematic medium, If A; = Ay = A, and the medium is atrest (v; = O,
o; = 0},Eq, (1,6) transforms into the usual equation of thermal conductivity of an
isotropic body, Equation (1, 8) represents the relationship which must be added to (1,1)
and (1,2), the law of mass conservation (0, 2), and the relationship (0, 6) in order to ob-
tain a closed system of equations,

Equations (1.1) and (1, 2) are substantially simplified if the medium is at rest (v, =

— 0, o; = 0). They assume the following form
of =grad p, — M xrotL — (MV) L (1.7
pm-=MxL (1.8)

The system (1, 7), (1.8) describes the statics of nematic liquid crystal media, This is a
system of six equations for three functions: pressure p and basis vector L,. Nevertheless,
the‘ system (1.7}, (1. 8) tumns out to be compatible for some restrictions placed on

p/; and Pm,. In fact, if we form the convolution of vector pm; with the tensor

R, and combine the resulting equations with (1, 7), we obtain
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pfi -+ pmaRai = grad P, ('19)

i.e., the system (1,7), (1, 8) turns out to be equivalent to system (1, 8), (1,9), The
latter will be solvable if

mili =0,  of; + pm,Ry; = grad, U (1.10)

This is a necessary condition of equilibrium for a nematic liquid crystal medium,
The most important case is the equilibrium under the action of bulk forces which have

the potential
pf = —grad ¢

and of bulk moments which originate in the homogeneous magnetic field &. Then, -due
to the anisotropy in magnetic susceptibility 3% = Xy — x; ¥ 0 (x; and %, are the
magnetic susceptibilities in the directions parallel and perpendicular to L ) we have
pm = Ay (LH) [L X H] (1.11)
It can be shown that for this case conditions (1.10) are satisfied and here
U= —g—12x (LH?, g+ 124y (LH)?+ p, = const

The last equation represents the integral of equations (1, 9),

In this manner, if conditions (1,10) are applicable, the solution of the equations for

statics of nematic liquid crystal media is in essence reduced to finding the solution of
Eq. (1.8) which agrees with the equations of Oseen [3, 5),

2, Initial conditions and boundaty conditions, SinceEgs, (1.1),
(1.2), (1.6) ad (0, 2) contain the first derivative with respect to time for the translat-
ional velocity v;, the angular velocity ,the density o and the temperature 7 ,and the
second derivative of the basis vector of the primary orientation of molecules [, the
following quantities must be given at the initial instant

i(r,0), w(r, 0), wi(r,0), o(r,0), T(r,0) (2.1

and, in addition, the field of the basis vector L;, i,e, the initial orientational struct-
ure of the medium L;(r, U).Here the case with initial homogeneous orientation is
examined, i.e, L; (r, U) = const. For the vector of translational velocity v; the
kinematic boundary conditions are most simply realized, According to the hypothesis
of adhesion to the solid surface which is impenetrable to the liquid, we have

vi (r, )], = v’ () (2.2)
Here V;° is the velocity of the boundary surface, The definition of the vector L; on
the surface o is in practice readily attainable through special treatment of the boundary
surface, For this reason the following boundary conditions are physically justifiable
Ly, t)|,=L"@) (2.3

The meaning of the boundary condition for Y is physically not clear due to the lack of
knowledge about the interaction of molecules, which rotate with respect to the long
axes in the medium, and the solid wall, For the formulation-of this condition we there~
fore resort just as in [17] to the hypothesis of rotational friction of molecules against
the rigid wall, Assuming that this stipulates the dissipative moment stresses LN, on
the boundary ¢, we have



Equations of motion of nematic liquid-crystal medla 837

LiNpvm l,, = BimLm (P — Lw) !a (2.4)

Here ﬁgm is the symmetric tensor of rotational surface friction which characterizes the
interaction of the medium with the rigid boundary, v,, is the extemal normai to the
boundary surface 0. Remembering that for the tensor L ;N,, only the L-component
is different from zero and that by virtue of (0.12) /¥ can be represented by »;, we
finally write
ay(vn) + a3 (L) (Ln) — By |, = b7~ (v x Lygrad T — BLoof,  (2.9)

Here the constant § = B,;,,L;L., must be found experimentally, The boundary condi-
tions for the temperature are formulated in the theory of thermal conductivity [18}: on
the boundary the temperature or the heat flux must be given (mixed boundary conditions
are also possible), The formulated initial conditions and boundary conditions allow to
determine nine functions v,, L;, p, p, P and T from nine equations (1,1), (1.2),(1.6),
{0, 6) and from the first equation (0, 2),

Since the finding of general solutions for the obtained equations represents a difficult
task, it is appropriate to examine simple cases of motion, Analysis of these cases per~
mits not only to elucidate the most important characteristics of the geneneral equations,
but also to make a comparison with results of experimental studies of mechanical be -
havior of nematic media,

3, Disinclinations, If pf; = Qand pm; = 0, the condition of statics (1.10)
is satisfied, and the equilibrium of a nematic medium is described by Eq. (1. 8) taking
into account (1, 3). This equation is satisfied by L; = const, i. e, uniform orientation
of axes L. However, disruptions of the homogeneous orientation are possible, This
occurs for example if a microadditive gets into the liquid crystal medium, and an in-
homogeneous field of L directions is formed around this additive, When motion occurs,
this additive is carried along by the moving front of crystallization and leaves a trace,
a line of singularity of the field L which is called disinclination,

Limiting ourselves to the case of plane deformation of axes /. we assume that

L, = cos @, Ly = sin®, L, =0, ©=d(g) (3.1)

Taking into account (3,1) in Egs, (1. 8) and (1, 3) we obtain
313~ dima

d(b 2 . } - o Am e @i ¥
7%{(1 — d cos 20) (Ti?w +dycos 20 =0, dy= g——7 (3.2)

The integral of this equation must satisfy the boundary conditions (3.3)
D=Ds for p=¢q DP=0Q,+kn for ¢g=¢,+2n k=0, +1,..)

The meaning of the flrst condition is apparent, The second condition is the condition
of periodicity of azimuth @ taking into account the physical indescernibility of L;
and — Ly;. If it is assumed that d, = U, the solution of Eq, (3.2) satisfying boundary
conditions (3, 3) and the equation for vector field lines of Z have the following form,
respectively

O =1, ko + D, r = ro {sin (M kg — Dg) }¥ (3.4)
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This case was examined by Oseen {4] and Frank [6], The paper [19] is devoted to
the analysis of the cased, #= 0.In these papers the equations which describe disinclin-
ations were obtained from the condition of minimum of the elastic potential, These
equations agree with (3,2) which represents a special case of equations of motion (1,1),
(1.2). The pictures of the configuration of the field of long molecular axes predicted
by Eqgs, (3.2) are in good agreement with experimentally observed pictures obtained
due to disinclination in nematic media,

4, Static gradient of directions of long axes of molecules, I
the liquid crystal medium is located between parallel surfaces £ = —+ [ in a constant
magnetic field, then per unit volume of medium of orienting bulk moment pmq is
active, This moment is determined by the expression (1.11), Under the action of this
moment a static gradient of directions of the long molecular axes arises under the con-
dition that the orienting action of the wall hinders the turn of molecules along the mag-
netic field H;. This effect was utilized in the determination of elastic moduli of the
continuum of directions d;;,,, [20 - 22], In these papers the authors assumed that the
bulk moment ©m; is balanced by the orienting moment of the wall which was taken
to be equal to ARD / d i,e,

A8 ®/3z* = AyH?sin @ cos @ {4.1)
Hese @ is the angle between the basis vector L; and the vector of magnetic field inte~
nsity, A is the modulus of elasticity of the continuum of directions,

The statics of nematic media is described by Eq, (1.8) from which it is possible to
obtain the equations for various types of deformations of the continuum of directions,
Three kinematically independent types of deformations are recognized depending on
the relative orientation of the vectors L; and [f; : buckling, lateral flexure and torsion
[21, 22]. Each type of deformation has its own equation, If

L = cos Qe, + sin We,, H = He, O = d(2)

then a lateral flexure of the field of directions L arises. This is characterized by the
equation

a*p dd \2)
Q13— — (dyass — drana) | 51112 ‘D + sin (D cos ‘1’( 7% ) | =

= AxH" sin CD cos b (4.2)

If
L =sin ®e, - cos De,, H=~He, ©L=UD(2)

then buckling takes place

2
dy212 Zg + (dis13 — a212) {sm (D + sin W cos ® ( q;:) ) } =
= AyH?sin <D cos @ (4.3)
Finally, if
L =cos e, +sinWe,, H=1Ile, =@
then the torsional deformation of the continuum of directions is described by the equa-
tion

2P o B .
(di2rz -+ diagi + dyize) 7 = AyH?sinDcos ® (4.4)
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Moduli dy3,3, Gyg1sy Gyars + Gram + Gusare called moduli of elasticity of the corr-
esponding types of deformations which are analogous to deformations of the solid body,
although pot identical with them [2], Equation (4, 4) agrees exactly with the empirical
equation (4,1), while Eqs, (4,2) and (4. 3) agree with (4,1) if d,5;3 = @ ja13- Although
Eqs. (4.2) and (4, 3) are different from Eq, (4.1), it is possible to show that their solut-
ion for boundary conditions

PN =D(=) =0

which follow from (2,3) for L° = 0, lead to the same result as the solution of Eq, (4. 1),
Namely, a layer of the thickness Z, is deformed by the magnetic field if # > H*

Here Z,H* = const (4.5)

The constant in the right side of (4, 5) is determined by moduli of elasticity and the
magnetic properties of the medium, Only the character of approximation to the orient-
ation of axes with respect to the field depens on d, . The law (4, 5) is preserved for all
Eqs, (4,1) - (4.4), The relationship (4, 5) has been experimentally confirmed more than
once and by different methods,

In this manner we can consider that the equations of statics of the continuum of dire-
ctions give the correct result for the case of turn of long molecular axes by the magnetic
field, '

6. Flow in s plain capillary, Letusexamine the steady flow of 2 nematic
medium in a plane capillary, The length of the capillary is g, the width is 4, and the
height is 2]. We assume that ;2 > [, then we can neglect edge effects and to examine
the flow between infinfte parallel planes, Let the medium in a magnetic field H;
which is perpendicular to the planes z = —- I move along the 2-axis, The lorig axes
of molecules rotate in the plane zz, i.e.

v=v(z)e,, L=cosPe,+sinPe,, H=He,, ©=0(@) (5.4)

Furthermore we assume that ' = const, p = 0, pf;, = 0, and the bulk moment prm,
is given by the expression (1,11), Then, substituting (5.1) into (1.1) and (1,2), we ob~
tain the following equatjons for the pressure p,, the velocity v; and the azimuth :

% = j:; [(l/gaz + a5 + Yyag 4+ azcos? @) sin @ cos D %zv- -
= Y3 (d1315 C08* @ + dyyy, 5in* D) (%:i )z] _ (5.2)

%’;* =0, 22 - :,d;I‘(m (20) 4 ag sin® @ cos? @ -+ a, sin? d))-Z—z]
Ny (00) = Y4 (as + @y + 20y + 20; — 2a,)
d [y 2 I d® 27
7{;[ /3 (G1g15 ©08* @ + dyy, sin® ©) (7;‘) J+
+ {285 + a5 — o0, + ae5in? @) 52— AyHsinDeos®| 42 <0 (5.3)

These equations must be integrated for boundary conditions (2.2) and (2, 3) in which
1 = 0,and Lo = e_,i.e, it is assumed that on surfaces £ = - [ the axes L do

not rotate vl)=2(—l)=0, @) =D(~l)=0 (5.4)

From (5, 2) we determine the pressure p. and dv / dz
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Dy = [Y/a8y + @y + Y/sa4 -+ ag cos? @] sin d cos CD v _

— /2 [31313008% D + dyqy, sin? ®I( e )2 z EE'L (9.9)

a-
av ap .
=7 —ﬂi (ML (o0) 4 aysin® @ cos? @ + a4 sin® D], _?O_P,t = ¢onst.

The constant of integration in (5, 5) is equal to zero by virtue of the syminetry of the
velocity field v (z). Substituting (5.5), into (5. 3) we obtain a differential equation
which must be satisfied by the azimuth (1)

£ —:-_E'{ ; {GOS (D 4‘(21212 / d1313 Sln (I)] { ) }“{”{P‘% ?2a8+a7— 2{164-6;63“32@}

X [N () -+ agsin? @ cos® @ + a,sin? D] — sin D cos CD} 53-(-1-)- =0 (3.6)

E=z/l, e=dus(AYHNY™, u=1{0p,/0z (AXH’ -

For the experimental investigation of flow of nematic media [24], capillaries with
! ~ 1072 cm and 9p, / 8z 10~ dynes/cm® were used, Taking into account that the mod-
uli of elasticity dgy3, dio1s ~ 1U™° dynes and Ay ~ 10-% cx®/g, we obfain that in a mag-
netic field with an intensity of several thousand oersted under ordinaty experimental
conditions the following relations are valid | e | <€ 1, |p|<€land [¢] <€ [u|. In this
manner Eq, (5,6) together with conditions (5, 4) for @ represents a nonlinear boundaty
value problem with a small parameter associated with the highest derivative, For this
boundary value problem [23] theorems of existence, of uniqueness, and of uniform ten-
dency of the solution to the solution of the degenerate equation (for & = 0) have been
proved,

If we are satisfied with an accuracy of O (g), it is possible to limit oneself to the
solution of the degenerate equation

Zalp'é sin 20 (cos?2® + a, cos 20 — a,) (c0s2D — ag)-! (5.7

a, = 2a4a57% ay = 1 + [2a4 + 40y (0)] ay™!, a3 = 1+ (as + 22, — ag)ay?

The quantity of liquid flowing om per unit time is

...hgv(x dx:'"ZhlS%dE,d (5.8)

If (5, 5) and (5, 7) are substituted into (5, 8), we obtain
Q = — Yahlfagua, 222 0, (9) (5.9)

Q. (1) = Bo® + 2 B, sin 2n + sin 2¢ 2 B_, (cos 2@ — a5)" +

n==1
+ 2D (1 — ay?)y» Arcth (;/ ! T g@)

= (10t + 2r — 4) ay + Yi (3—2r + 102,) — a5 (@ + 3 o)
B, = 5tas + Ys [(8r — 5) a5 — Tay, — 4oty ]
By =t + Ys(r+q+ o), By = YYpa (3ay -+ Sa3), By = Y3
B, =1, t (8t + 3q), B_y =ty t [(10t + 39) a5 — 623 — 30u]
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By = — Ugt* (1 — o)
D =t (3t + 2¢ — ay — %) &g — Satoy + *a (1 — as?) (o1 -+ 2ay)
(1 + 204 — ay)
t= ag? 4+ oty — O, q = 2%y — a0y, T = 05’ + 30, — 1
The parameter @ is the value of the azimuth @ for § = 4, if we limit ourselves to the
degenerate solution, Then the dependence of H on parameter @ follows from (5, T)

8 1 Th
H=HH @, He=[-222tL]

_ [o1 (c0S 20 — &)}
Hi@)= [sin 2 (a3~ &1 coS 20 — cos? 2]/ (5-10)
Expetimentally it is more convenient to investigate the time 7 for the outflow of a fixed
volume ¢° as a function of the magnetic field intensity . It is apparent that T = @/
/ ¢, then we obtain from (5, 9}

)

3p. _ Q@ :
T="Tul1(9), Tow= 307 (c0) (zhls—g’z—) s 1@ =gy O

It is evident that 7, is the time of outflow for the volume (° of an ordinary liquid
with the viscosity 71 (o0}, while Eq, (5,10) together with (5, 11) represents the depend-
ence of ' on H given in a parametric form,

Let us analyze the character of this dependence,

1, If H— oo, then ¢~ 0, T, (p) — 4, 7 — T oo. This means that for — oo the
curve 7 (H) asymptotically approaches 7, and the nematic medium flows as an ordinary
Newtonian liquid with the viscosity n; (). The physical meaning of the coefficient of
viscosity 7, {0} is clear from this,

2, If H -0 then: @Y, arcosas,

Ty (9) - "]_L(O) / Ny (o), T Tog=—13 Qﬁ’ﬁhL (0) (2hPap, | 62)~*.

From this limiting relationship it is clear that for ¥ — 0 also, the nematic medium
behaves as an ordinary Newtonian liquid, but it has now the following coefficient of
viscosity:

ﬂ(ﬁ?) = 3 (ay 4 a5 + 201 + 208 -+ 2a7) + Yy (1 - tig)ag [Maog0e™t (1 — og) — 1

3, The upper asymptote 7, and the lower 7, are inversely proportional to the grad«
ient of pressure dp, / 0z

The character of dependence predicted by Eqgs, (1,1) and {1, 2) and the relationships
(1) - (3) agree with conclusions drawn from experimental investigation of the action of
the magnetic field on the rate of outflow of p-azoxysnisole from 2 capillary [24],
Thus, the equations obtainied for the motion of nematic liquid crystal media not only
predict the fact of anisotropy of viscosity, but also lead (even in the zeroth approxima-
tion) to the correct dependence of anisotropy of viscosity on the magnetic field intensity,

We note that the investigated conditions of flow cotrespond to the case where: a} the
vector of velocity v is perpendicular to the vector I;® (orientation of L ~axes in the
initial state), and L°; is perpendicular to the vector @ = ¥,rotv. In an analogous man-
ner it is possible to examine two other flow conditions: by #; is parallel to L;* and

L;* is perpendicular to @;; ¢) o is perpendicular to L;*, and L;* is parallel to ;.

These three viscosimetric flow conditions were used for experimental measurement of
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viscosity coefficients of nematic liquid-crystal media,

8, The effect of "drag"”, Let usexamine the motion of a liquid-crystal
medium in a long cylindrical vessel the axis 02 of which is perpendicular to the direct-
ion of a homogeneous magpetic field H = He,. The cylinder rotates with a constant
angular velocity ®©. Then Eqs, (1,1) and (1,2) with the boundary condition (2,2) for
velocity p; and with the dynamic condition for L,

VifrmR = OnRm€inm, Pzrlr=p =0 (6.1)
allow the following flow mode:
Vi = OpRmbinm, L =cosa(t)e, +sina(t)e, (6.2)
For this mode Eqs, (1,1) and (1, 2) take the form
of =gradp, (as+ 2ay) (%‘;- —0)= — AyH?sin2a (6.3)

The second of Eqs, (6, 3) was presented in papers [25-27] for explanation of regularities
of the effect of "drag" on the liquid by a rotating magnetic field, . We note that this
equation follows from (1,1) and (1, 2) for the condition that the momeat stresses at the
wall are equal to zero, L e. orientational interactions of molecules witl the walls are
absent, Furthermore, the rate of rotation of cylinder walls @ is determined by the
angle @, in the stationary mode of motion, i.e.

® = (ay + 2a,)"' Ay H?sin 22,
If these conditions are not satisfied, the mode of motion becomes more complicated, which
in fact is observed experimentally, A compiete quantitative theory of this effect requ-
ires special examination of Eqs, (1.1) and (1.2),

In conclusion, we can say that the developed hydrodynamics of nematic medfa expl-
ains the most important regularities which are observed experimentally, This fact app-
arently testifies in favor of the adequacy of obtained equations for the peculiar mecha-
nical behavior of liquid-crystal media,

BIBLIOGRAPHY

1. Gray, G.W,, Molecular Structure and the Properties of Liquid Crystals, Acad~
emic Press, New Yotk - London, 1962,

2, Chistiakov, 1.G,, Liquid Crystals, M., "Nauka", 1966,

3, Oseen, C,W,, Neue Grundlegung der Theorie, Arkiv Mat,, Astron,, Fys,, Bd,
19A, No, 9, 1925,

4, Oseen, C,W,, DieBesiehungen zwischen der molekularen Struktur und den
Dichteschwankungen, Arkiv Mat,, Astron,,Fys,Bd,,22A, Ne.12, 1930,

5. Oseen, C,W,, Die anisotropen Fluessigkeiten, Tatsachen und Theorien,

Berlin, 1929,

6. Frank, F,C,, On the theory of liquid crystals, Disc, Faraday Soc., Vol 25,
1958,

7. Ericksen, J., L., Conservation laws for liquid crystals, Trans, Soc,Rheol,,
Vol 5, 1961,

8, Ericksen, J. L., Hydrostatic theory of liquid crystals, Arch, Ration, Mech, Anal,,
Vol, 9, N5, 1962.



9.

1o,
11,
12,
13,
14,
ls,

16,

17,

18,
19,

20,

21,
22,
23,

24,

25,

26,

Equations of motion of nematlic liquid-crystal media 843

Leslie, F, M., Some constitutive equations for liquid crystals, Arch,Ration

Mech., Anal,, Vol.28, N4, 1968,

Lee Davison,’ D. E,, Linear theory of mechanical equilibrium of liquid
crystals of nematic types, Phys, Fluids, Vol,10, N°11, 1967,

Lee Davison, D,E,, Linear theory of heat conduction and dissipation in
liquid crystals of nematic type, Phys,Rev,, Vol,180, N°1, 1969,

Lee Davison, D,E,, Dissipation in liquid crystals, Phys,Rev,, Vol 183,
Ne1, 1969,

Aero, E, L, and Bulygin, A,N,, Linear mechanics of a liquid-crystal
medium, Fizika Tv, Tela, Vol 13, Ng, 1971,

Aero, E,L,, Mechanics of liquid crystal media, Izv, Akad, Nauk SSSR,
MZhG, N3, 1970,

Aero, E, L., Theory of asymmetric mechanics and its application to real
media, Izv, Akad, Nauk SSSR, MZhG, M5, 1967,

Kuvshinskii, E,V, and Aero, E,L,, Continuum theory of asymmetric
elasticity, The problem.of internal rotation, Fizika Tverdogo Tela, Vol 5,
N9, 1963,

Aero, E,L,, Bulygin, A,N, and Kuvshinskii, E,V,, Asymme-
tric hydromechanics, PMM Vol, 29, N2, 1965,

Lykov, A,V,, Theory of Thermal Conductivity, M,, Gostekhteorizdat, 1952,

Dzialoshinskii, I.E,, Theory of disinclination in liquid crystals, JETP
Vol, 58, N4, 1970,

Frederiks, V,K, and Zolina, V,, On application of magnetic field
to measurement of forces which orient anisotropic liquids in thin homogeneous
layers, Zhum, Russk, Fiz, -Khim, Ob-va, ch, fizich,, Vol, 62, N¢5, 1930,

Zwetkoff, V., Die Einwirkung des Magnetfelds und des elektrischen Felds

auf anisotropfluessige Mischungen, Acta Phys, URSS, Vol,6, N, 1937,

Freedericks, V, and Zwetkoff, V,, Ueber die Einwirkung des elek-
tirschen Felds auf anisotrope Fluessigkeiten, Acta Phys, URSS, Vol, 3, N6,1934,

Brish, N,I,, On boundary value problems for equations ¢y" == f (z, y, y’) for
small e. Dokl, Akad, Nauk SSSR Vol, 95, N3,

Mikhailov, G.M, and Tsvetkov, V,N,, The action of magnetic and
electric fields on the flow rate of anisotropic p -azoxyanisole in a capillary,
Zh, Eksperim, i Teor, Fiz,, Vol 9, N¢5, 1935,

Tsvetkov, V.N,, Motion of anisotropic liquids in a rotating magnetic field
Zh, Eksperim, i Teor, Fiz,, Vol, 9, N5, 1939,

Zwetkoff, V., Bewegung anisotroper Fluessigkeiten im rotierenden Magnet-
feld, Acta Phys, URSS, Vol,10, N4, 1939,

Tsvetkov, V,N,, Optical properties of anisoropic liquid layers in a rotat-
ing magnetic field, JETP Vol, 9, N8, 1939,

Translated by B, D,



