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Equations of motion for nematic liquid-crystal media in a magnetic field and 

also the equations of thermal conductivity are obtained. Together with the con- 

dition of continuity and the equation of state, these relationships determine the 

fields of nine quantities which characterize the nematic fluid: densities, pressures, 

temperatures, basis vectors of the local axis of anisotropy, rates of collective 
rotations of molecules near their “long” axes, and vectors of translational velo- 
city. Initial conditions and boundary conditions are formulated. Special cases 

are examined: equilibrium of the medium in a homogeneous magnetic and tem- 

perature field, disinclinations, orientational boundary layer, and also the flow 
in a ilat capillary in a magnetic field and the drag of fluid by a rotating magn- 
etic field. Based on obtained results, an explanation is given for a number of 
effects which have been discovered experimentally earlier. 

Liquid crystals occupy on the thermodynamic scale of states an intermediate 
(mesophase) position between anisotropic crystals and isotropic liquids. Two 
fundamental varieties of mesophases exist: the smectic and the nematic. In the 

liquid crystal medium of the smectic type the one-dimensional long-range co- 

ordination structure is preserved. The molecules are organized in regularly spa- 
ced parallel monolayers. In the medium of the nematic type the long-range 

order is completely absent in the spatial arrangement of molecules, just as in 

the ordinary liquid. However, in contrast to a liquid and in similarity to a solid 

crystal the long-range order of orientation for the “long” molecular axes is pre- 

served. The orientational order is characterized in each point of the medium by 
the axis of mean molecular orientation. This axis is simultaneously the local 

axis of symmeuy of the medium. 
In their mechanical properties the nematic media are quite close to liquids. 

Experiments show [I. 23 that the behavior of nematic liquids in a force field, 

a temperature field, a magnetic field, and an electrical field has a number of 
anomalies (anisotropy of viscosity, scale effect, orientation in hydrodynamic 
flow, drag of the medium by a rotating magnetic field, and others. ) 

The peculiar combination of mechanical properties makes liquid crystal media 
interesting objects for investigation from the point of view of continuum mechan- 
ics. At the present time the hydrostatic theory p - 91 is the most developed. In 
papers [lo - 121 linear hydrostatics is examined with consideration of thermal 
conductivity and effects of rotational viscosity. The hydrodynamic theory which 
takes into account elastic and thermal effects in a magnetic field is just being 
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developed 113, 141. Some results are available in paper [9j. 
Liquid crystals belong to so-called media with moments or media with rotat- 

ional degrees of freedom [Xl, At the phenomenological level these degress of 
freedom are taken into account in asymmetric mechanics of continuous media. 
On the basis of ideas of asymmetric mechanics [16, 173 the general hydrodyna- 
mic theory for nematic liquids is developed in [13, 143 taking into account eia- 
stic, thermal and magnetic effects. Based on this development. the goal of the 

present paper is to obtain a closed system of equations of motion, to formulate 
boundary conditions and imtial conditions. to clarify the most essential charac- 

teristics of the equations, and to examine the simplest cases of motion of nematic 
liquids. 

The conservation laws for momentum and characteristic angular momentum, for mass 
and local moment of inertia, and also the equation for entropy balance have the form 

pvi* = $+ pf, p(Iinun)' =$ -'nm 6imn+ Pmi (0.1) 

P’ = -pPivv, Zi, -(%* %ntm T a,nEmpi)W,zpr=o (0.2) 

(pa-)'+ div(q/T) = 8, 6 2 0 (0.3) 

Here ocn and fin are unsymmetric tensots of stresses and moment stresses, pfi and pmi 
are bulk densities of emi forces and moments, vi is the velocity of translational 
motion of a small region of the medium, ai is the angular velocity of the self-rotation 
in this region, Zi,, is the local moment of inertia, p, 2’ are, respectively, the density 
of the medium and the absolute temperature, an,,, is the tensor of Levi-Civita, w is 
the angular velocity of rotation of the trihedral of the principal axes of the tensor I,,, 

s is the entropy per unit mass, qi is the heat flux, 8 is the entropy production in 

the irreversible process. The entropy production is considered as a given function. The 
dot indicates a substantive derivative. 

For a nematic medium the local moment of inertia Z,m is expressed [13] through the 
princQa1 vaiues of the tensor of inertia of the molecule (iI, i,, is), the mass of the mol- 
ecule m, the structural parameter j which characterizes the local degree of orientation 
of long molecular axes, and through the basis vector Li of the axis of nematic molec- 

ular order (which ls equivalent to the axis of anisotropy of the medium) 

Z nm = Q& + (I,, - Q) J+, 
z = il + i2 2i3 - i2 - il 

I- 2m +-6m (1 -il. 
i, + i2 28 - i2 - il 

Ill =x-i- (jm 0 + w (0.4) 

The angular velocity of the self-rotation ai for a nematic medium has the form 

Here q is the velocity of rotation of the axis of anisotropy L, which is simultaneously 
the principal axis of the tensor I,,; L& is the average rate of rotation of molecules 
around their central axes, parallel to the axis L; S” is the molecular angular veiocity; 
A,V is the number of molecules in the small region of the medium. If the conditions 
I; = Z’,, = 0 and the first of reIationships (0.4) are satisfied, as will be assumed in 
the following, then the law of consentation of local moment of inertia is identically 
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satisfied. 

We proceed now to the determining relationships obtained in paper 1131. Elastic phe- 

nomena in nematic media which are connected with a change of specific volume and 

the appearance of gradients of directions of the axis L, are described by the laws of 
elasticity 

p = p’ + a (6 - 6”) (0.6) 

T. tn = - pb,, - dI,,, RniRmm - dmaR,,,Rat - 

- dmR, Rai - (dials - ha) RapRaiLpL, (0.7, 

M,, = Mine + kau (Rin - R,L,L,) + dlls2 (&in - ‘iL,) R,, + 

+ dm (Rmi - R, L,L,) + dma Ri,L,L,,, R, = La 2 ciaP, Ri; = 0 (U.8) 
n 

Here p is the pressure, 6 is the specific volume, Tin and M,i are elastic stresses and 
elastic moment stresses. R+, is the tensor of orientation gradients. The superscript zero 

indicates values of quantities in the undeformed state. Temperature dependent material 

coefficients Q and dnsa, dlarz, dlatl, 4~1s represent the compressibility of the medium 

and the elasticity of the continuum of directions. 
The irreversible processes of internal friction are connected with viscous flow, the 

local rotation of the axis of anisotropy L with respect to the surrounding region of the 

medium, and also with molecular rotation around the axes parallel to L. The dissipa- 
tion function and the corollary rheological reiationships Cl33 have the form 

T8= - qiTwl aT /axi + I$,,) D(in) + I’$q (a - a), Cimn -I- N, na (0.91 

II,, = aln(in)+ '/2a2 (*(ia) v, + v(m)LaLi) + 

+ (d$, 4 ~,,)L~LB '(a~) $ (diLn fa2'i,) "(mm) + 

+ 'I2 a6(LnLa&ig +$L, tmna)(m-a)m (0.10) 

lJ[inl = Va as (Vcnaj L,L, - 8th) L,L,) - 

- ‘h [2a7 Emi, + =EJ (L,Lcl emi= i- L,Lp G,,&l (@ - a)m (V.11) 

Ni = (a&, + aloL,L,) n, - bT_IL, aT / azp cis,q (cl. 12) 

ni = Ln&f,z [ axi; oi = l/a rot; v, vCinj = l/2 (hi i ax, $ 3un /a.c,) 

Here lItin, and nli%I are the symmetric and antisymmetric parts of the viscous stress 
tensor, LiAv, is the tensor of viscous moment stresses, uBn) is the symmetric tensor of 

velocity gradients. Material coefficients from e, to as are responsible for the bulk, 
shear and rotational viscosity, while @ and aI,, are coefficients of “moment” viscosity; 
b- is the gyrothermal coefficient which characterizes the appearance of viscous moment 

stresses in the field of temperature gradients. The complete stress and moment stress 

tensor is the sum of corresponding elastic and viscous components 

‘in =Ti,+II. ; z* Pi, = Min + L,Nn 

Lrteversible processes in liquid crystals are also connected with thermal conductivity. 

The thermal conductivity law has the form 1131 

Here h ,, and 2~ are coefficients of thermal conductivity in the parallel and perpendi- 
cular directions to 

All material coefficients in (0.10) - (0.13) depend on temperature. They can also 
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It is evident from (1.4) that the change in entropy is connected with thermal conducti- 
vity and dissipation of mechanical energy in the motion of centers of inertia of mole - 
cules and during their rotation. If 

T = COnSt, L‘i =e con&, L’ =1 0, 9 = 0 

then it follows from (1.4) that s’ = 0. In the general case s = s (T, 6, Mi, RI,) 
(Mi fs the rna~e~~tion of the medium), Therefore, 

The last two terms on the right side describe the magnetocaloric and the orientational 
gradient thermal effects. Both of these are i~i~l~~ntly small compared to the first 
two because of the quite small magnetization of liquid crystals and the small energy of 
thermodynamic transition of a nematic liquid crystal into an isotropic liquid. Consequ- 

ently, 

By virtue of the thermodynamic identity (8s / a@)~ = (81, I dT)e we obtain 

s’z. T-‘T’Q - ~‘(~~~r~T)* 

If we neglect the effect of orientation gradients on the specific volume (the effect is of 
second order in smallness with respect to al~i !’ ikll),we can write 

6’ z.z T’ jgj SS = T-’ T*Cp, cp= fg - 
1 aP 

I 
i a@ , 

Tj,,,;& \F ) 
(4.5) 

Here c, is the &eclfic heat at constant pressure. Taking in account (0.10) -“;O. 12) 

and (1. S), we obtain 

c,T’= h,.bT + (h, - A;) [L grnd T di v L + L grad (L grad T)] + 
+- b grad 9 roi L + c~.u(,,,;z?(,,,) + L;Zl/it~(i,~)L,V~m;:) + IJ+ (T,irJnVtin))’ + 

$- 20, (1, i I #(ii.)! ?‘(nm) +a~u(~~7~)~~(771~)+ zni3 (L;~‘(ixl)Lq&trq) (0) - a), + (1-G) 

+ 3fil(@ - al, (0 - a),& $ CQ g(f) - a)* --.[L(o - a)]“) + ct&ini + ~~*~~~~~)z 

This is the thermal conductivity equation generalized to the case of motion of an ani- 
sotropic nematic medium. If A.L = h 1, = h , and the medium is at rest (vi = 0, 
CG = 0) I Eq. (I. 6) transforms into the usual equation of thermal conductivity of an 
isotropic body. Equation (1.6) represents the relationship which must be added to (1.1) 
and (1.2). the law of mass conservation (0.2), aud the relationship (0.6) in order to ob- 
tain a closed system of equations. 

Equations (1.1) and (1.2) are subst~tial~ simplified if the medium is at rest (P~ = 
T- 0, ai = 0). They assume the following form 

pf = grad D., - M x rot L - (MV) i (1.7) 
pm:=MxL (1.8) 

The system (1.7). (1.8) describes the statics of nematic liquid crystal media. This is a 
system of six equations for three functions: pressure p and basis vector Li. Nevertheless, 
the system (1.7), (1.8) turns out to be compatible for some restrictions placed on 

P!i and PFt?i. Iu fact, if we form the ~volu~on of vector plni with rhe tensor 
l?i,i and combine the resulting equations with (1.7). we obtain 
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i.e., the system (1.7), (1.8) turns out to be equivalent to system (1. B), (1.9). The 
latter will be solvable if 

miLi = 0, Pfi f pmzR,i = gradi U (1.10) 

This is a necessary condition of equilibrium for a nematic liquid crystal medium. 
The most important case is the equiIibrtum under the action of buIk forces which have 

the potential 
pf = - grad g 

and of b&k moments which originate in the homogeneous magnetic field H. Then, due 
to the anisotropy in magnetic susceptibility *X = X t - XI # 9 (X b and XI are the 
magnetic susceptibiIWies in the directions parallel and perpendfcukr to L ) we have 

~rn=*x(LE)[LxHj (1.11) 

It can be shown that for this case conditions (1.10) are satisfied and here 

17 = - g - l/z Ax (LH)“, g i_ ‘/z AX (LH)s + p+ = const 

The last equation represents the integral of equations (1.9). 
In this manner, if conditions (1.10) are appKcabIe, the solution of the equations for 

statics of nematic Iiquid crystal media is in essence reduced to finding the solution of 
Eq. (1.8) which agrees with the equations of Oseen p. 51. 

2, Initial condition8 and boundary conditlona. Since Eqs. (1.1). 
(1.2), (1.6) and (0.2) contain the first derivative with respect to time for the translat- 
ional velocity Vi, the angular velocity $,the density p and the temperature T f and the 
second derivative of the basis vector of the primary orientat4on of molecules Li, the 
foIIowing quantities must be given at the initial instant 

vi (ry 0)~ 9 (r, O), wi (r, O), p (r, O), T (r, 0) (2. i) 

and, in addition, the field of the basis vector Li, i.e. the initial orientational struct- 
ure of the medium L:, (r, 0). Here the case with initial homogeneous orientatiOlr is 
examined, i.e. Li (r, 0) = const. For the vector of transhtional veiocity ~:i the 
kinematic boundary conditions are most simply realined. According to the hypothesis 
of adhesion to the solid surface which is impenetrabIe to the Iiquid. we have 

Ui (r, t) in = vi”(t) (2.2) 

Here vi“ is the vebcity of the boundary surface. The definition of the vector Li on 
the surface cr is in practice readiIy attainable through special treatment of the boundary 
surface. For this reason the following boundary conditions are physically justifiabb 

Li (r, t, I0 = ,Lie (t) (2.3 

The meaning of the boundary condition for 11, is physically not clear due to the lack Of 
knowledge about the interaction of moIecuIes, which rotate with respect to the long 
axes in the medium, and the solid wa& For the formulrrtion of this condition We there- 
fore resort just as in [17] to the hypothesis of rotational friction of molecu~s against 
the rigid waII. Assuming that this stipulates the dissipative moment stresses LiN, on 
the boundary u, we have 
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Here ptrn is the symmetric tensor of rotational surface friction which characterizes the 
interaction of the medium with the rigid boundary, V, is the external normal to the 
boundary surface 0, Remembering that for the tensor L JV,, only the L-component 
is different from zero and that by virtue of (0.12) N,, can be represented by nf, we 
finally write 

a9(~n) + u,, (VL)(LII) - p+ lLI = &IT--l(v ): Ugrad T -PLO i. (25) 

Here the constant j3 = fitmLIL, must be found experimentally, The boundary condi- 
tions for the temperature are formulated in the theory of thermal conductivity [ 183: on 
the boundary the temperature or the heat flux must be given (mixed boundary conditions 
are also possible). The formulated initial conditions and boundary conditions allow to 
determine nine functions q, Li, p, p, 9 and ?’ from nine equations (1, I). (1.Q (1.6). 
(6.6) and from the first equation (0.2). 

Since the finding of general solutions for the obtained equations represents a difficult 
task, it is appropriate to examine simple cases of motion. Analysis of these cases per- 
mits not only to elucidate the most important characteristics of the geneneral equations, 
but also to make a comparison with results of experimental studies of mechanical be - 
havior of nematic media, 

3, Dfsinciin&ti~~s, If pfr = Oand pnt = 0, the condition of statics (2.16) 
is satisfied. and the equilibrium of a nematic medium is described by Eq. (1.8) taking 
into account (1.3). This equation is satisfied by Li = con&, i. e. uniform orientation 
of axes -&. However, disruptions of the homogeneous orientation are possible. This 
occurs for example if a microadditive gets into the liquid crystal medium, and an in- 
homogeneous field of L directions is formed around this additive. When motion occurs. 
this additive is carried along by the moving front of crystallization and leaves a trace, 
a line of singularity of the field I’, which is called d~inc~natio~ 

Limiting ourselves to the case of plane deformation of axes I, we assume that 

4 = cos 0, L, = sin@, L, = 0, m = Q(q) 

Taking into account (3.1) in Eqs. (1.8) and (1.3) we obtain 

(3.1) 

The integral of this equation must satisfy the boundary conditions (3.3) 
!I) E $I* for 0 = (Fo, (I) = @* + krr for q = qn f 2x (k = 0, +t,...) 

The meaning of the tit condition is apparent, The second condition is the condition 
of periodicity of azimuth @ taking into account the physical indes~ernibi~~ of Li 
and -ii* If it is assumed that d, = 0, the solution of Eq. (3.2) satisfying boundary 
conditions (3.3) and the equation for vector field lines of L have the following form, 
respectively 
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This case was examined by Oseen [4] and Frank [Sj. The paper [19] is devoted to 
the analysis of the case a!,:: + O-In these papers the equations which describe disinclin- 
ations were obtained from the condition of minimum of the elastic potential. These 
equations agree with (3.2) which represents a special case of equations of motion (1.1). 
(1.2). The pictures of the configuration of the field of long molecular axes predicted 
by Eqs. (3.2) are in good agreement with experimentally observed pictures obtained 
due to disinclination in nematic media. 

4. Static gradient of direction, of long axes of molacules. If 
the liquid crystal medium is located between parallel surfaces z = + I in a constant 
magnetic field, then per unit volume of medium of orienting bulk moment pmr is 
active. This moment is determined by the expression (1.11). Under the action of this 
moment a static gradient of directions of the long molecular axes arises under the con- 
dition that the orienting action of the wall hinders the turn of molecules along the mag- 
netic field Hi. This effect was utilized in the dctermination of elastic moduli of the 
continuum of directions diiimn [20 - 222 In these papers the authors assumed that the 
bulk moment on% is balarzed by the orienting moment of the wall which was taken 
tobeequalto Adl(PId;lL,ie. 

A@ @J&Z: = AXH%in @ co9 @ 14.1) 

Here b, is the angle between the basis vector Li and the vector of magnetic field inte- 
nsity, A is the modulus of elasticity of the continuum of directions. 

The statics of nematic media is described by Eq. (1.8) from which it is possible to 

obtain the equations for various types of deformations of the continuum of direction% 
Three kinematically independent types of deformations are recognized depending on 
the relative orientation of the vectors Lr and [Ii : buckling, lateral flexure and torsion 

121, 22j. Each type of deformation has its own equation. If 

L = cos @e, + sin @e,, IX = Ifey, cl, = U(2) 

then a lateral flexure of the field of directions L arises. This is characterized by the 

equation 

d 
rP(t, 

- - 1313 (jyl (d 1313 - d12L2) kin* (IJ $$- + sin (1J cos cl) (2)21 = 

= hxH2 sin @ cos cl, (4.2) 

L = sin (De, -k cos CJe,, H = He,, ClJ = (D(X) 

then buckling takes place 

d 

= AxHZ sin 0 cos G=J (4.3) 

Finally, if 
L = cos elk, + sin (I)ez, H=Ue,, @=@,(x) 

then the torsional deformation of the continuum of directions is described by the equa- 
tion 
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Moduli 4SlS9 421s, dull + 4221+ 41~2ue called moduli of elastidty of the cow 
esponding rypes of defotmations which are analogous to defkmations of the solid body, 
although not identical with them [2j, Equation (4.4) agrees exactly with the empirical 
equation (4.1), while Eqs. (4.2) and (4.3) rgree with (4.1) if d,,~, = d I~~~. Altbougb 
Eqs. (4.2) and (4.3) arc different from Eq. (4.1). it is possible to show that their 8olut- 
ion for boundary conditions 

0 U) = u,I (-2) = 0 

which follow from (2.3) for La = 0, lead to the same result as the solution of Eq. (4.1). 
Namely, a layer of the tbidmess 2, is deformed by the magnetic field if I? > H* 
Here 

q,H* = const (4.5) 

The constant in the right side of (4.5) is determined by moduli of elasticity and the 
magnetic properties of the medium. Only rhe character of approximation to the orient- 
ation of axes with respect to the field depens on d, . The law (4.5) is pnrennd for all 
Eqs. (4.1) - (4.4). The relationship (4.5) haa been experimenraliy confirmed more than 
once and by different methods. 

In this manner we can consider that the equations of statics of the continuum of dire- 
ctions give the correct result for the case of turn of long molecular axes by the magnetic 
field. 

6. Flow lo a plain crpillrry. Let us examine the steady flow of a nematic 
medium in a plane capillary. The length of the capillary is 0, the width is h, and the 
height is 21. We assume that h > I, then we can neglect edge effects and to examine 
the flow between infinite parallel planes. I& the medium in a magnetic field Hi 
which is perpclldicular to the planes 2 = + I move along the z-axis. The lorig axes - 
of molecules rotate in the plane x2, t e. 

F‘ = D (5) e,, L=cos@e,+sinOe,, H=He,, O=@(x) (5.1) 

Furthermore we assume that T = const, I@ = 0, pfr = 0, and the bulk moment pmt 
is given by the expression (1.11). Then, substituting (5.1) into (1.1) and (1.2), we ob- 
tain the following eqWiOnS for the pressure p+, the velocity Vi and the azimuth (0 : 

dp, 
ax = -& [(‘/$a, + a4 + ‘llfq + a, cosz CD) sin 0 cos CD $- - 

- l/z &Ul co@ (3 + dla12 sin2 0) 
d@ 2 

i Jl dr (5.2) 

aP+ 
ay= 

0 aP+ 
‘-z- = &l‘(rlL (=J) + a, sin2 CR cos2 @ + a6 sins @) g] 

rll(=J) = l/q (%I + a2 + 2% + 26 - 2%) 

d dz I ‘/a @,,I, cosa 0 + &?I% sine CD) (s,‘j + 

+ [,W8 + a7 - ‘i2a, + u6 sin2 @) g I- A@” sin @ cos @ 1% = 0 (5.3) 

These equations must be integrated for boundary conditions (2.2) and (2.3) in which 

z+ ZZ 0, and La = e,, i.e. it is assumed that on surfaces 5 = & I the axes J? do 
not rotate 

u(Z) = V(-Z) = 0, cp (2) = 0 (-I) = 0 (5.4) 

From (5.2) we determine the pressure p+ and du / dx 
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P+ = L11aa2 + a4 dV 
-I- %a, + a3cosa~jsin@c0sQ)~ - 

- I!2 I~~~~~CO@cE, + dlaln sin201 
( 1 
$!& s + z Z$k 

,_ (5.5) 
8V 

-T&=x -$$[Q (m) + assinlcDcoss0 + a,sin20]‘l, - = con&. ‘2 

The CoWant of integration in (5.5) is equal to zero by virtue of the symmetry of the 
velocity fieid u (sc).Substituting (5.5)s into (a 3) we obtain a differential equation 
which must be satisfied by die azimuth Qi 

e -$ 
i 

+ [cos2 0 -!-&21z i 1313 d sins01 (g)‘) _t~~~[1j2as+a,--‘l,a,3_~ssiba0] X 

d@ 
x [qL (w) + a, sins0coss@ + ca,sin~@]-' - sin @COS Q) x = 0 (5.6) 

E = XJ I, e = a,,, (AQfaW’, p = dap, / dz (ApYa)-’ 

For the experlme8tal inv@tigation of flow of nematic media 1243, capiWes with 
1 - 1C.F cm and ap+ 1 aa io- 2 dynes/cm3 were used. Taking into account that the mod- 

uli of elastici d191s, d,, - IPa dynes and Ax - W” c.~s/g, we obtain that in a mag- 
netic fietd with an intensity of several thousand oersted under ordinary exparimental 
conditions the following retations are valid I & i e% 1, I P I 4 1 and f 8 / < i p 1. In this 
manner Eq. (5.6) together with conditions (5.4) for (D represents a nonlinear boundary 
value problem with a small parameter associated with the highest derivative, For this 
boundary value problem p233 theorems of existence, of u~q~ne~ and of uniform ten- 
dency of the solution to the solution of the degens?rare equation (for 8 = 0) have been 
proved. 

If we are satisfied with an accuracy of 0 (a), it is possible to limit oneself to the 
solution of the degenerate equation 

2a,iG = sin 20 (cos*20 + a1 co9 20 - a,) (cos20 - aa)-’ (5.7) 
a, = 2a,a3-l, cc, = 1 + 12ad + 4q, (3o)l Q--~, a, = 1 + (aa + 2~2, - a&~~-~ 

The quantity of liquid flowing out per unit time is 

Q=hjV(x)dx= -2hl&p6 
-1 0 

(5.8) 

If (5.5) and (5.7) are substituted into (5.8), we obtain 

Q=- 1/4h13a32p-3a,-a -+ Q,(v) (5.9) 

Q i (y) = &cp + i B, sin 2ny7 + sin 2tp *$I B_, (COs 2~ - +s)-~ i- 
tlsrl 

+20(1- @)-‘i* Arc&h (j/z @z 9) 

B,, = (IfIt + 2r - 4) a, + I/* (3-2r + lOa& - a8 (ala* + V, a,) 

B, = 5 tas + 'IS 1(8r - 5) aQ - ?a, - 4a,a,l 

BB = t + lia(r + q + cd, BS = %I @a, + 5=& B* = ‘I,, 

B_, = Viz t (3t -I- 3q), B_, = Ill2 t [(lot + 3q) a, - 6a, - 3&l 
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D = t (3f -j- 2g - ct, - Ve) a$ - ?khQ + “is (1 - aJ) (g -i- %J 
ii ji- 2QS - %I 

E = c+f + cc&j - a.@ q = 2a, - cc,cc~, T = cq + 3a, - i 

The parameter rp is the value of the azimuth @ for E = “1, ff we limit o~@lves to the 
degenerate soludo4 Then the dependence of & on parameter 9 foXlows from 15.7) 

Jf3 w = ~a1(cos 2cp - us)]“’ 
[sin 2v (as - al uos 2rp - Co@ %p]“* 

(5.10) 

Experimentally it is more convenient to investigate the time T for the outflow of a fixed 
volume Q” as a function of the magnetic f&M inter&y ZI, It is apparent that T = @/ 
f v”, then we obtain from (5,9) 

It is evident that Too is the time of outflow for the volume 0” of an ordinary liquid 
with the viseo&ty q_t (co), while Eq. (%l#) together with &Xl) represents the depend- 
ence of 9’ on Lf gkn in a parametrk form, 

Let us anaiyze the character of t&s dependence, 
1. If .@-tw, then 9-0, T,(T)_,~, T_, TW.ThismtransthatforB--.aotbe 

curve 2’ (rr) asymptoticaUy approaches T, and the nematic medium flows as an ordinary 
Newtonian liquid with theviscosity rll (,). The physical meanfng of the co&Went of 
tiksity ql IsQ) is clear fkom this_ 

2. If a-t 0. them P - Vs. ar@a%, 
T, (rp) - nJO1 I Ttl (m)1 T-T*=- 3 QbflJ” (0) (ZIbK+p+ f 8$+. 

From this limiting relationship it is clear that for If -+ 0 also, the nematic rrmdfum 
behaves as an ordinary Newtoniatn Iiquid, but it has now the feSbwb~g at&T&Sent of 
tiscrrSitp: 

?‘+Jl = f/, (oe + aJ) + 2a1+ 2as + 2a7f + ‘fi (I f a&Q w*ws-’ ci - %f - *I 

3. The upper asymptote T, and the lower F, are inversely proportional to the grad- 
ient 0f pressure ap, / 82. 

The chamcter of deperxlence predicted by Eq4 [I, I) and {I, 2) and the ~ti~~~ 
fr) - f3) agree v&th ~n~~~~o~ drawn from expetimental ~~~ga~~ of the action of 
the magnetic field on the rate of outflow of p-anoxyani;saie from a capiliary f243. 
Thus, the equations obtained for the motion of nematic liquid crystal media not only 
predict the fact of anisotropy of viscosity, but also lead (even in the zeroth appraxima- 
tion) to tl”k@ Correct dependence of anisotropy of viscosity on the magnetic f&kid intensity, 

We xx@& that the ixrvestigated condftions of flow cormspond to the case where: a] tie 
vecw Of Vekcity 9 is ~r~~~~~ to the vector Zs* ~~e~~o~ of L *axes in the 
initial st@e), and L*i fs pwpendicular W tie vector OI k: “l/arotp: In an anrjiogous man- 
ner it fs possible to examine two other flow conditions: b) u[s is parallel to Z;i* and 
4’ is prpendtcular to erg; C) ui is perpeudieular to Lo*, and L$ is parallel to a+ 

These thms vfscosimettic flow conditions were used for exp&mental measurement of 
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viacuity codficients of nematic Iiquid-crystal media. 

6, The cffeat of “drag”, Let US examine the motion of a liquid-crystal 
medium in a Iong cyIindrical vea8eI the axis 02 of which ia perpendicular to the direct- 
ion of a homogeneous magnetic fleld H = He,. The cyIinder rotates with a consuurt 
aftgi&U fetacrty 0. Then EQ. (1.1) Nld (1.2) With ths bOtUldiUy COadiriOn (2.2) for 
veIocity vi and with the dynamic c4mdition for L, 

vi ln=R = (%J%ntt?un, i&t /r-R = 0 (6.4) 

allow the foIIowing flaw mode: 

vi= %Kn~rnm, L =cosa(t)e, + sina(t)e, (6.2) 

For this mode EQ. (1.1) and (1.2) take the form 

pf = grad P, (as + 2%) (s - a) = - A@asin 2cL (6.3) 

The secaad of Eqs. (6.3) was presented in papas @5-27’1 fur expluution of regulprities 
of the ef%ct of “drag” on the Iiqtid by a rotating magnetic field. t We note that this 
equation foIlows from (1.1) and(1.2) fat the condition that the moment sueases at the 
waII are equal to zero. te. orientational interactions of moIccuIes wit&he waiIs are 
absent. Furthermore, the rate of rotation of cylinder wafls o is determined by the 
angIe a, in the stationary mode of motion, i.e. 

o = (% + 2u,)+ A@F sin 2% 

If these conditions are not satisfied, the mode of motion becomes more complicated, which 
in fact is observed experimentaIIy. A complete qwntitadve theory of this effect requ- 
ire8 special examination of Eqs. (1.1) and (1.2). 

In conclusion, we can say that the developed hydrodynamics of nematic media expl- 
ains the most important reguIariUu which are obmrved cxpcrimentaJly. This fact app- 
arently testifies in favor of the adequacy of obtained equations for the pecuiiar me&a- 
nicaI behavior of Iiquid-cryatai media. 
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